Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37504106

RESUMO

In this scientific work, we demonstrate, for the first time, a new biosensing system and procedure to measure specifically the total Tau (T-Tau) protein in serum, one of the most relevant biomarkers of Alzheimer's disease (AD). AD is a progressive brain disorder that produces neuronal and cognitive dysfunction and affects a high percentage of people worldwide. For this reason, diagnosing AD at the earliest possible stage involves improving diagnostic systems. We report on the use of interferometric bio-transducers integrated with 65 microwells forming diagnostic KITs read-out by using the Interferometric Optical Detection Method (IODM). Moreover, biofunctionalized silicon dioxide (SiO2) nanoparticles (NPs) acting as interferometric enhancers of the bio-transducers signal allow for the improvement of both the optical read-out signal and its ability to work with less-invasive biological samples such as serum instead of cerebrospinal fluid (CSF). As a result, in this paper, we describe for the first time a relevant diagnostic alternative to detect Tau protein at demanding concentrations of 10 pg/mL or even better, opening the opportunity to be used for detecting other relevant AD-related biomarkers in serum, such as ß-amyloid and phosphorylated Tau (P-Tau), neurofilaments, among others that can be considered relevant for AD.


Assuntos
Doença de Alzheimer , Nanopartículas , Humanos , Doença de Alzheimer/diagnóstico , Dióxido de Silício , Proteínas tau , Peptídeos beta-Amiloides , Biomarcadores , Fragmentos de Peptídeos/líquido cefalorraquidiano
2.
Biosensors (Basel) ; 12(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36551058

RESUMO

Despite the remarkable development related to Point-of-Care devices based on optical technology, their difficulties when used outside of research laboratories are notable. In this sense, it would be interesting to ask ourselves what the degree of transferability of the research work to the market is, for example, by analysing the relation between the scientific work developed and the registered one, through patent. In this work, we provide an overview of the state-of-the-art in the sector of optical Point-of-Care devices, not only in the research area but also regarding their transfer to market. To this end, we explored a methodology for searching articles and patents to obtain an indicator that relates to both. This figure of merit to estimate this transfer is based on classifying the relevant research articles in the area and the patents that have been generated from these ones. To delimit the scope of this study, we researched the results of a large enough number of publications in the period from 2015 to 2020, by using keywords "biosensor", "optic", and "device" to obtain the most representative articles from Web of Science and Scopus. Then, we classified them according to a particular classification of the optical PoC devices. Once we had this sampling frame, we defined a patent search strategy to cross-link the article with a registered patent (by surfing Google Patents) and classified them accordingly to the categories described. Finally, we proposed a relative figure called Index of Technology Transference (IoTT), which estimates to what extent our findings in science materialized in published articles are protected by patent.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Transferência de Tecnologia , Biotecnologia
3.
Sensors (Basel) ; 22(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35161965

RESUMO

We developed a new label-free assay to evaluate the inhibition capacity of AX-024 by means of a new Point-of-Care (PoC) device for application in the development of new drugs in autoimmune diseases. The technology of PoC is based on interferometric optical detection method (IODM). For this purpose, we have optimized and developed an assay protocol whereby a Glutathione S-Transferase modified protein (GST-SH3.1), which contains a functional domain of a protein involved in T-cell activation, together with the AX-024 inhibitor has been studied. The chips used are a sensing surface based on nitrocellulose. We used streptavidin and a biotinylated peptide as links for the immobilization process on the sensing surface. The biotinylated peptide and AX-024 inhibitor compete for the same functional group of the GST-SH3.1 modified protein. When the inhibitor binds its binding site on GST-SH3.1, the biotinylated peptide cannot bind to its pocket on the protein. This competition reduces the total molecular mass of protein fixed onto the biosensor. In order to quantify the inhibition capacity of AX-024, several Ax-024:GST-SH3.1 ratios have been studied. We have compared the read-out signal for GST-SH3.1 protein not interfered by the drug, which served as a positive blank, and the response of the GST-SH3.1 modified protein blocked by the inhibitor. The technology has been correlated with confocal fluorescence microscopy.


Assuntos
Doenças Autoimunes , Técnicas Biossensoriais , Preparações Farmacêuticas , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/tratamento farmacológico , Sítios de Ligação , Humanos , Ligação Proteica , Proteínas
4.
Biotechnol J ; 16(7): e2000355, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33984186

RESUMO

Cultured neuronal networks (CNNs) are a robust model to closely investigate neuronal circuits' formation and monitor their structural properties evolution. Typically, neurons are cultured in plastic plates or, more recently, in microfluidic platforms with potentially a wide variety of neuroscience applications. As a biological protocol, cell culture integration with a microfluidic system provides benefits such as accurate control of cell seeding area, culture medium renewal, or lower exposure to contamination. The objective of this report is to present a novel neuronal network on a chip device, including a chamber, fabricated from PDMS, vinyl and glass connected to a microfluidic platform to perfuse the continuous flow of culture medium. Network growth is compared in chips and traditional Petri dishes to validate the microfluidic chip performance. The network assessment is performed by computing relevant topological measures like the number of connected neurons, the clustering coefficient, and the shortest path between any pair of neurons throughout the culture's life. The results demonstrate that neuronal circuits on a chip have a more stable network structure and lifespan than developing in conventional settings, and therefore this setup is an advantageous alternative to current culture methods. This technology could lead to challenging applications such as batch drug testing of in vitro cell culture models. From the engineering perspective, a device's advantage is the chance to develop custom designs more efficiently than other microfluidic systems.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Técnicas de Cultura de Células , Microfluídica , Neurônios
5.
ACS Omega ; 5(40): 25913-25918, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33073117

RESUMO

In this work, it is reported for the first time the use of a network of periodic optical resonant nanopillars for sensing vapors of volatile organic components. In particular, this work evaluates the presence of methanol, ethanol, isopropanol, acetic acid, propionic acid, and toluene vapors at different working distances between the transducer and the surface of the sample in the liquid state, obtaining the sensing curve response of each one of them. In addition, it studies the thin film of liquid condensed onto the nanopillar surface, estimating their corresponding thickness value by means of numerical photonic simulations and their correlation with the corresponding vapor pressure of different specimens.

6.
Mikrochim Acta ; 186(8): 570, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31338609

RESUMO

An approach is presented for covalent immobilization of biomolecules on an acrylate phosphorylcholine hydrogel. The immobilization and the hydrogel formation take place simultaneously by a thiol-acrylate coupling reaction, induced by UV-light (254 nm). The hydrogel is prepared on two polymeric surfaces (the HardCoat protective layer of Blu-Ray discs, and SU-8) and applied to fluorescence microarray and label-free interferometric detection. For the first, Cy5 labeled analytes are used (λem 635 nm) and, for the second, a periodic array of high-aspect ratio nanopillars detects unlabeled analytes by interferometry. Bioavailability of the immobilized probes is demonstrated in labeled assays; for the case of oligonucleotides by discriminating single nucleotide polymorphisms, and, for the case of antibodies, by BSA immunorecognition. The raw hydrogel is employed to detect human C-reactive protein, in both labeled and non-labeled assay formats, with sensitivities of 30 ng·mL-1 and 2 pg·mL-1, respectively. Graphical abstract Schematic presentation of the phosphorylcholine (MPC) hydrogel preparation onto BluRay disc and SU-8 nanopillars to perform fluorescence and label-free interferometric detection, respectively. It selectively detects C-reactive protein (CRP), but it can covalently immobilize antibodies or nucleid acid probes to detect other analytes.


Assuntos
Técnicas Biossensoriais/métodos , Fluorometria/métodos , Hidrogéis/química , Imunoensaio/métodos , Análise em Microsséries/métodos , Hibridização de Ácido Nucleico/métodos , Anticorpos/análise , Proteína C-Reativa/análise , Humanos , Hidrogéis/síntese química , Fosforilcolina
7.
Sensors (Basel) ; 18(8)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111765

RESUMO

Food allergy is a common disease worldwide with over 6% of the population (200⁻250 million people) suffering from any food allergy nowadays. The most dramatic increase seems to be happening in children and young people. Therefore, improvements in the diagnosis efficiency of these diseases are needed. Immunoglobulin type E (IgE) biomarker determination in human serum is a typical in vitro test for allergy identification. In this work, we used a novel biosensor based on label-free photonic transducers called BICELLs (Biophotonic Sensing Cells) for IgE detection. These BICELLs have a thin film of nitrocellulose over the sensing surface, they can be vertical optically interrogated, and are suitable for being integrated on a chip. The BICELLs sensing surface sizes used were 100 and 800 µm in diameter. We obtained calibration curves with IgE standards by immobilizating anti-IgE antibodies and identified with standard IgE calibrators in minute sample amounts (3 µL). The results, in similar assay format, were compared with commercially available ImmunoCAP®. The versatility of the interferometric nitrocellulose-based sensing surface was demonstrated since the limit of detections for BICELLs and ImmunoCAP® were 0.7 and 0.35 kU/L, respectively.


Assuntos
Técnicas Biossensoriais/métodos , Hipersensibilidade Alimentar/diagnóstico , Adolescente , Criança , Colódio , Hipersensibilidade Alimentar/sangue , Hipersensibilidade Alimentar/imunologia , Humanos , Imunoglobulina E/sangue , Interferometria
8.
Opt Lett ; 41(23): 5430-5433, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906205

RESUMO

In our previous work we demonstrated for the first time, to the best of our knowledge, the experimental capability of resonant nanopillars (R-NP) arrays as biochemical transducers. In this Letter, we provide evidence of the capability and suitability of R-NP arrays on a chip to function as label-free optical multiplexed biosensors. R-NP are based on Si3N4/SiO2 Bragg reflectors with a cavity of SiO2. In order to demonstrate the biosensing performance, R-NP were biofunctionalized by the immobilization of IgG antibodies acting as a bioreceptor. This immobilization was carried out through the silanization of the pillars sensing surface with APTMS (3-aminopropyltrimethoxysilane). R-NP were integrated in eight different sensing arrays on a quartz surface chip. An optical fiber bundle monitored each sensing array vertically and independently after each biofunctionalization step, and subsequently after every recognition event of increasing concentrations of anti-IgGs. The results report a novel multiplexed optical biosensor made of eight sensing arrays on a chip with promising performance and yield.


Assuntos
Nanoestruturas , Análise de Sequência com Séries de Oligonucleotídeos , Fibras Ópticas , Dióxido de Silício , Transdutores
9.
Biosensors (Basel) ; 2(3): 291-304, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25585931

RESUMO

In this paper, label-free biosensing for antibody screening by periodic lattices of high-aspect ratio SU-8 nano-pillars (BICELLs) is presented. As a demonstration, the determination of anti-gestrinone antibodies from whole rabbit serum is carried out, and for the first time, the dissociation constant (KD = 6 nM) of antigen-antibody recognition process is calculated using this sensing system. After gestrinone antigen immobilization on the BICELLs, the immunorecognition was performed. The cells were interrogated vertically by using micron spot size Fourier transform visible and IR spectrometry (FT-VIS-IR), and the dip wavenumber shift was monitored. The biosensing assay exhibited good reproducibility and sensitivity (LOD = 0.75 ng/mL).

10.
J Phys Chem B ; 111(49): 13694-702, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18001082

RESUMO

A series of sulfonated diamines were synthesized which were further used to obtain relevant sulfonated naphthalenic copolyimides. Tough and ductile membranes were cast from solutions of the copolyimides in dimethylsulfoxide, which exhibit high ion-exchange capacity and high water uptake. The protonic conductivity of the membranes equilibrated with water lies in the range 1.0-8.6 S/m, at 25 degrees C, being of the same order of magnitude as that reported for perfluorinated acidic membranes. The values of the transport number of protons and sodium ions are close to the unit for very dilute electrolyte solutions, but they lie in the range 0.80-0.90 for moderate concentrations. The membranes exhibit rather high electroosmotic permeability. The similarity of the diffusion coefficients of protons and water in the membranes suggests that the Grottus mechanism governs the protonic conductive process in the acidic membranes equilibrated with water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...